Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(11): e202303254, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38145337

RESUMO

Developing enzyme alternatives is pivotal to improving and enabling new processes in biotechnology and industry. Artificial metalloenzymes (ArMs) are combinations of protein scaffolds with metal elements, such as metal nanoclusters or metal-containing molecules with specific catalytic properties, which can be customized. Here, we engineered an ArM based on the consensus tetratricopeptide repeat (CTPR) scaffold by introducing a unique histidine residue to coordinate the hemin cofactor. Our results show that this engineered system exhibits robust peroxidase-like catalytic activity driven by the hemin. The expression of the scaffold and subsequent coordination of hemin was achieved by recombinant expression in bulk and through in vitro transcription and translation systems in water-in-oil drops. The ability to synthesize this system in emulsio paves the way to improve its properties by means of droplet microfluidic screenings, facilitating the exploration of the protein combinatorial space to discover improved or novel catalytic activities.


Assuntos
Hemina , Metaloproteínas , Hemina/química , Metaloproteínas/química , Peroxidase , Metais
2.
Nanoscale ; 15(42): 16959-16966, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37812064

RESUMO

Metalloenzymes represent exemplary systems in which an organic scaffold combines with a functional inorganic entity, resulting in excellent redox catalysts. Inspired by these natural hybrid biomolecules, biomolecular templates have garnered significant attention for the controlled synthesis of inorganic nanostructures. These nanostructures ultimately benefit from the protection and colloidal stabilization provided by the biomacromolecule. In this study, we have employed this strategy to prepare nanozymes with redox capabilities, utilizing the versatile catalytic profile of Pt-loaded nanomaterials. Thus, we have investigated protein-templated Pt-based nanoclusters of different sizes and compositions, which exhibit remarkable oxidase, catalase, and reductase-like activities. The interplay between the composition and catalytic activity highlighted the size of the nanocluster as the most prominent factor in determining the performance of the nanozymes. Additionally, we have demonstrated the use of protein-templated nanozymes as potential co-catalysts in combination with enzymes for coupled reactions, under both sequential and concurrent one-pot conditions. This study provides valuable insights into nanozyme design and its wide range of applications in the design of complex catalytic systems.


Assuntos
Metaloproteínas , Nanoestruturas , Nanoestruturas/química , Oxirredutases/metabolismo , Oxirredução , Catálise
3.
Small ; 19(51): e2300163, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37144410

RESUMO

Hundreds of new electrochemical sensors are reported in literature every year. However, only a few of them makes it to the market. Manufacturability, or rather the lack of it, is the parameter that dictates if new sensing technologies will remain forever in the laboratory in which they are conceived. Inkjet printing is a low-cost and versatile technique that can facilitate the transfer of nanomaterial-based sensors to the market. Herein, an electroactive and self-assembling inkjet-printable ink based on protein-nanomaterial composites and exfoliated graphene is reported. The consensus tetratricopeptide proteins (CTPRs), used to formulate this ink, are engineered to template and coordinate electroactive metallic nanoclusters (NCs), and to self-assemble upon drying, forming stable films. The authors demonstrate that, by incorporating graphene in the ink formulation, it is possible to dramatically improve the electrocatalytic properties of the ink, obtaining an efficient hybrid material for hydrogen peroxide (H2 O2 ) detection. Using this bio-ink, the authors manufactured disposable and environmentally sustainable electrochemical paper-based analytical devices (ePADs) to detect H2 O2 , outperforming commercial screen-printed platforms. Furthermore, it is demonstrated that oxidoreductase enzymes can be included in the formulation, to fully inkjet-print enzymatic amperometric biosensors ready to use.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Grafite/química , Tinta , Nanoestruturas/química , Técnicas Biossensoriais/métodos
4.
Beilstein J Org Chem ; 18: 1264-1269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225730

RESUMO

An original synthesis of the structure of dihydrorosefuran, a compound allegedly identified in Artemisia pallens and Tagetes mendocina, has been developed. The key steps in the five-step 36% overall yield synthesis are a CpTiIIICl2 mediated Barbier-type allenylation of a linear aldehyde and the formation of a 2,5-dihydrofuran scaffold through a Ag(I)-mediated cyclization. Neither of the reported spectral data for dihydrorosefuran match those of the synthetic product, suggesting that the isolated compound from Tagetes mendocina is in fact the natural product rosiridol, while the real structure of the product from Artemisia pallens remains unknown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...